UtraViolet EXplorer spectrograph

Exploitation and data reduction

By Christian Buil and Valérie Desnoux

Spectroscopy Workshop ASW2020 AAVSO

November 8, 2020

UtraViolet EXplorer spectrograph

Content:

- 1 Origin of UVEX project
- 2 UVEX properties
- **3 Example of telescope adaptation**
- 4 Diffraction order overlap
- **5 Spectral calibration**
- 6 Instrumental response
- 7 Flat-field
- 8 About the detector

UtraViolet EXplorer spectrograph

Origin of UVEX project

ASW2020

Origin of UltraViolet EXplorer spectrograph project (1/4)

My initial objective (2014) :

- A low cost spectrograph, that you can build yourself (public domain)
- Easy to find components (ThorLabs, Edmund, ...)
- High performances for education and science
- Access to UV et IR spectral domain (new for amateurs)
- Create a community

The first UVEX prototype : 2014

UVEX is a classical Czerny-Turner + a cylindric lens for correct astigmatism

First 3D printing prototype : 2017

Origin of UltraViolet EXplorer spectrograph (2/4)

The Nice's people UVEX team : Stéphane Ubaud, Pierre Dubreuil, Alain Lopez et Jean-Luc Martin, Christian Buil (Antibes, French Rivera, spring 2018)

UVEX official site : http://spectro-uvex.tech

Current 3D printing version (V3)

We learned a lot... an UVEX V4 3D printing is coming !

Motorized grating rotation, magnetic support for the grating for instant removal, fine tuning of spectrum focus, robust interface for the camera and more...

Origin of UltraViolet EXplorer spectrograph (3/4)

UVEX 3D V4

Planned for spring 2021

http://spectro-uvex.tech

And a commercial and industrial version of UVEX is also coming...

UVEX by Shelyak

UtraViolet EXplorer spectrograph

UVEX properties

ASW2020

UVEX spectrograph is not necessary better than a LISA or Alpy600 in term of observation of faint object !

So why UVEX ?

(1) For the extreme spectral range coverage, from UV (atmosphere cutoff) to IR (silicium detector cut-off) - *thanks to the achromatism of Czerny-Turner optical formulae*

(2) For the flexibility of use (you can change easily grating and slit or add a fiber optic)

(3) For the mechanical stability (Shelyak concept)

(4) For the remote options (focus + grating rotation)

Symbiotic star

3D printing UVEX V2 model

Relative intensity

0.6

0.4

0.2

0

7600

Fe II 7516

> O I 7774

> > 7800

Be star IR activity

8000

8200

UVEX can be renamed IREX (for InfraRed Explorer !)

Select IR blazed grating

NI

8629

8600

Ca II

8662

N I 8703 - 8712 - 8719

8800

9000

9200

P17

8467

8400

Wavelength in Å

Ca II

8542

3D printing UVEX V3 model

Note the modest telescope used for interesting science...

UVEX properties (6/8)

Large choice of gratings

UVEX properties (7/8)

Optimized for small and medium sized telescopes (100 to 300 mm) + F/D > 7

Do not hesitate to use UVEX on a small telescope.

Here an economical Maksutov 127 mm f/11.8, a narrow slit and a small pixel modern CMOS camera, for an excellent spectral resolution and... a real pleasure to use !

My preferred configuration

P Cyg star spectrum on a small telescope 300 l/mm + 14 microns slit - R = 1350

Vega spectrum on a small telescope 1200 l/mm + 14 microns slit - R= 3800

CMED : Med 3x3 - Gauss 0.7 - Bin 2x2

Messier 42 spectrum (6 x 300 s) - 600 l/mm - 23 microns slit - Telecope : 250 mm at f/8.2 - ASI294MM camera

Not ideal condition : polluted sky + Moon light

After sky removed : imperfect sky substraction

UtraViolet EXplorer spectrograph

Example of telescope adaptation

Accommodation on a fast Newton telescope (1/2)

Example: from f/4 to f/8 (Kepler model)

... use of an apochromatic lens -APM 2.7 x model very recommended

 Typical computed spot-diagram from 365 to 900 nm

 Image: spot-diagram from 365 to 90

Nova Cas 2020 - 29 October 2020 - 10" inch Newton f/8.2 - UVEX 300 l/mm - 35 microns slit - ASI294MM - 2 x 1200 sec. exposure

The classical limitations of refractive optics (here a Barlow):

- Residual chromatism aberration (well fixed by APM lens)
- Limitation in spectral transmission...

Measured transmission of APM Barlow

Can't observe down to 360 nm (but not so bad!)

UtraViolet EXplorer spectrograph

Diffraction order overlap

Here the blue order #2 recover the IR order #1

UVEX - 600 I/mm blaze 750 nm - slit 23 microns - ASI294MM camera - RG610 order filter added -> a pure infrared spectrum

UVEX - 600 I/mm blaze 750 nm - slit 23 microns - ASI294MM camera - RG610 order filter added - shifted by a simple grating rotation

ASI294MM CMOS camera (19.2 mm wide)

Standard 600 I/mm blaze 750 nm spectrum

Add of a pass-band filter Astrodon Series Gen 2 Blue

Band-pass of Astrodon blue filter at second order. The 600 I/mm is now equivalent to 1200 I/mm + excellent blaze effect

Astrodon Red band filter Isolate Halpha at R=3000 by using a 600 l/mm grating

Practical implementation of a filter order

Adopt an external filter wheel

Can be manual or motorized

UtraViolet EXplorer spectrograph

Spectral calibration

Spectral calibration (1/3)

Second degree is optimal

My favorite method : on the sky !

(1) Balmer lines a A or B type star are useful references.

(2) Fit a 2 nth degree (only) in lambda

Point (2) is a very important optical property of UVEX : the dispersion function can be extrapolated toward the UV and the IR with a reasonable precision.

(Alp600 or LISA spectrograph for example, can't)

UVEX data's are simple to calibrate

High precision dispersion law (better then 1/10 of pixels !)

A tip for a maximal precision...

Alternate method : Find dispersion function or the zero point by using artificial sources

Example of line emission lamps

PenRay type or domestic FluoCompact (Hg lines)

UtraViolet EXplorer spectrograph

Find instrumental response

Take into account the atmospheric transmission (very critical for UV observations).

Before atmospheric correction

After correction (ISIS atmospheric transmission model)

Atmospheric transmission is function of

Instrumental response (3/5)

The effect of atmospheric differential refraction can be also dramatic in UV !

Wavelength in Å

Wavelength in Å

The photometric slit solution

Strategy : use the narrow part for taking a high res spectrum, use the large part for taking a photometric spectrum to correct in a second time the high res spectrum from the differential atmospheric dispersion (instrumental response)

Typical photometric slit (Shelyak model)

Star on the narrow part

Star on the large part

Be careful during binning operation in presence of residual chromatism

(Schmidt-Cassegrain spherochromatism for example)

UtraViolet EXplorer spectrograph

Take a flat-field

Flat-field (1/2)

Use the highest color temperature available halogen lamps for a max. UV signal and take very high Signal to Noise Ratio flat-field (many exposure added)

But the actual calibration module solution for UVEX is not compatible (moderate color temperature of internal lamp + absorber)

So... I move the source in front the telescope aperture... a very manual method :-(

Typical flat-field image (ZWO CMOS camera ASI294MM) wavelength variations of the instrumental gain

 Zero signal down to 365 nm
 Presence of fringes (BSI detector)

 UV
 RED

Tip : Use the command « FLAT_OPT » for reduce noise in this part of the flat-field (localized Gaussian filtering)

Mandatory for correct low and high frequency wavelength variations of the instrumental gain

For wavelengths down to 365 nm : mixed method, see : http://www.astrosurf.com/buil/instrument_response/

Sample of usuable continuum lamps

« Classic » halogen 3000 K lamp (not easy to find currently) and SOLUX M16 4700K (daylight lamp / museum lamp)

UtraViolet EXplorer spectrograph

About the detector

Photon detector today (1/8)

The detector is of course a central element of any spectrograph

Now, CMOS detectors replace CCD detectors

QHY model

ZWO model

ATIK model

The good news :

- The Read-Out-Noise (RON) is lower (1.5 e- typ.)
- The Quantum Efficiency go up to 80% (thinned technology)
- For equivalent surface size, the CMOS is less costly

The bad news :

- Very small pixel size, often not adapted to actual spectrograph
- AmpGlow (but the problem is fixed on the most recent chips)
- Presence of the Random Telegraph Signal noise (RTS)...

- -> very important for spectroscopy
- —> important for spectroscopy

A CMOS specific problem...

Random Telegraph Signal : a non-Gaussian noise that manifests as pixels popping up or down in the image at random, with a lifetime of a fraction of a second to a few seconds (salt and pepper noise)

- Reduce detectivity of faint object (limiting magnitude)
- Add possible artifact (false detection)

But... based on the effective global noise (Gaussian + non Gaussian) IMX571 is not as good as the IMX183 sensor

Photon detector today (4/8)

Thanks to the small pixel size of « normal » CMOS sensor (2 to 5 microns) : If the image spectrum is oversampled, some processing can be applied for reducing the noise and preserve spectral resolution during data reduction.

	CMED algorithm	
	Input sequence : parachute-	
CMOS noise filter tool under ISIS	Output sequence : parachute_bin-	
	Number : 8	
	Offset : offset	
You can select (and experiment !)	Dark : dark 1200	
rou our coroct (und oxporniont ly	Median filter	
- median method →	○ 1X1 ○ 3X3	
	Binning	
 binning method 	○ 1X1 ○ 2X2	
 classical gaussian convolution 	Gaussian filter : 1	
 or a mixture 	Go	

How to compute the spectral pixel sampling ? (number of pixels per FWHM)

A practical example for UVEX + ASI183MM camera (2.4 microns pixel size)

Consider UVEX spectrograph equipped with 300 lines/mm grating. The linear dispersion of this configuration is P = 330 A/mm.

Suppose a spectral resolution of $R = \lambda/\Delta \lambda = 600$ at 5500 A (35 microns entrance slit).

The FWHM (Full Width at Half Maximum) of a monochromatic spectral line (spectral impulsion) is : FWHM = λ / R = 5500 / 600 = 9.2 A.

The linear value is $FWHM^* = FWHM / P = 9.2 / 330 A = 0,028 mm$.

If p is the pixel size (p=0.0024 mm), the sampling factor (S) of the impulsion line is :

S = FWHM* / p = 0.028 / 0,0024 = **11.5 pixels**

Note : We have more than 11 pixels in the half wide of a spectral line. The oversampling is huge ! Remember, the minimum sampling according Shannon criteria (or Nyquist) is S = 2.

Linear dispersion (P) of UVEX in function of the grating selected :

- 300 lines/mm -> P=330 A/mm
- 600 lines/mm -> P = 168 A/mm
- 1200 lines/mm -> P = 84 A/mm
- 1800 lines/mm -> P = 56 A/mm (note : only usable for blue and UV observations)

A general rule for spectrography (true for CCD & CMOS) : for faint objects, always prefer a long exposure to a fraction of this long exposure.

10 exposures (120 sec. each) : Signal to Noise Ratio = 4.6 at 4500 A) 1 exposure (1200 seconds) : Signal to Noise Ratio = 9 (at 4500 A)

Photon detectors today (8/8)

Wich camera for UVEX ?

Parameters for popular ZWO CMOS cameras (and		
QHY equivalent)		

	ASI1600MM	ASI183MM	ASI294MM
Size	4656 x 3520	5496 x 3672	4144 x 2822
Pixel	3.8 microns	2.4 microns	4.63 microns
ADC	12 bits	12 bits	14 bits
Gain (200)	0.467 e-/ADU	0.360 e-/ADU	0.344 e-/ADU
RON	1.34 e-	1.58 e-	1.43 e-
Dark -15°C	0.0083 e-/s	0.0011 e-/s	0.0010 e-/s

and quantum eπiciency ->

Wavelength	ASI1600MM	ASI183MM	ASI294MM
3500 A	(16 %)	(25 %)	(28 %)
3800 A	30 %	50 %	52 %
4000 A	45 %	66 %	72 %
4500 A	61 %	78 %	82 %
5000 A	62 %	80 %	84 %
5500 A	56 %	71 %	74 %
6000 A	48 %	57 %	62 %
6500 A	41 %	45 %	55 %
7000 A	30 %	40 %	49 %
7500 A	26 %	33 %	37 %

A possible merit function : $D^* = \frac{f \text{ QE } p^2}{\text{RON}}$

f is the binning factor, QE is the quantum efficiency at a given wavelength, *p* is the physical width of the pixel, RON is the read noise in the raw image.

If CMED is applied (oversampling case) : D

$$0^{\star} = \frac{f \text{ QE } p^2}{0,47 \times \text{RON}}$$

A high value of D* is better

D* at 500 nm

	ASI294MM	ASI183MM Unbinned	ASI183MM Standard binning	ASI183MM Optimal binning
f	1	1	2	2
QE	0.84	0.80	0.80	0.80
P	4.63 microns	2.40 microns	2.40 microns	2.40 microns
RON	1.43 e-	1.58 e-	1.58 e-	1.58 e-
D*	12.6	2.9	5.8	12.4

D* is equivalent for ASI183MM (after processing) and ASI294MM !

ASI183MM offers a better cosmetic aspect (less RTS + binning) and more flexibility (for example, it can be used with a 10 microns slit)

ASI294MM offers a larger spectral coverage (superior to 45%) and a better blue and red QE.

Other criteria are the price, the slit width (w), the seeing and the sampling (+spectral resolution).

For w =< 23 microns (<10 inches telescope), choose ASI183MM For w > 23 microns (10+ inches telescope) , choose ASI294MM

UtraViolet EXplorer spectrograph

Thank you very much !

ASW2020