http://astrosurf.com/aras
LHIRES2 spectrograph
JULY 3, 2004
- THE FIRST LIGHT OF LHIRES2 !
CLICK
HERE
See
also the July 2004 Pic du Midi Observatory mission report
Spectroheliographic
observation with LHIRES2 !
LHIRES2
observation of Jupiter planet near Ha
line (the large feature near center) at R=17 000. The vertical lines are telluric
(atmospheric water vapor). The inclined lines are the Fraunhofer lines of the
Sun light reflected by Jupiter. The tilt is linked to the fast rotation of the
planet (relative Doppler shift between the western and the easthern Jupiter
disk)
A high
resolution spectrograph for Schmidt-Cassegrain telescopes
and F/8 to F/10 refractors
Un
spectrographe haute-résolution pour télescopes Schmidt-Cassegrain et lunettes ouvertes à F/8-10
Dans
cette page les performances de LHIRES2, des exemples de programmes scientifiques
et les plans détaillés.
Click here for technical
details
1. Summary of specification
The LHIRES2 spectrograph can be used on small amateur
telescopes for joint scientific programs between pro/am
and for pedagogical purpose.
Le spectrographe LHIRES2 peut être utilisé sur des petits télescopes amateur dans la perspective d'une collaboration scientifique entre amateurs et professionnels, ainsi que pour une approche pédagogique et pratique de l'astrophysique.
Performance evaluation for slitless mode, for a seeing of 3 arc-seconds
and an exposure of 1 hour (at 6563 A and a A0V type star)
Evaluation
de la performance pour une utilisation sans fente, un seeing de 3 secondes d'arc et une heure
de pose (à la longueur d'onde de 6563 A et pour une étoile de type A0V)
TELESCOPE |
RESOLUTION |
SPECTRAL RANGE |
SAMPLING |
LIMIT MAG. |
LIMIT MAG. |
Lun. 128 mm |
18000 |
6520 - 6600 |
0.12 |
5.8 |
4.5 |
Performance evaluation for slit mode (18 microns
wide), seeing of 3 arc-seconds
and an exposure of 1 hour (at 6563 A and a A0V type star)
Evaluation
de la performance pour une utilisation avec fente (largeur 18 microns), un seeing de 3 secondes d'arc et une heure
de pose (à la longueur d'onde de 6563 A et pour une étoile de type A0V)
TELESCOPE |
RESOLUTION |
SPECTRAL RANGE |
SAMPLING |
LIMIT MAG. |
MAG. LIMIT |
SC 280 mm F/D=10 |
17000 |
6520 - 6600 |
0.12 |
6.7 |
5.5 |
2. Resolution
check
The consistency of LHIRES2 and UVES spectra is excellent. This proves the good
reliability of LHIRES.
La consistance du spectre LHIRES2 avec
le spectre de UVES est excellente. Ce test montre la fiabilité de LHIRES2.
The following figure shows a comparison of the UVES spectrum
of a K0II star and a LHIRES2 spectrum of Alpha UMa (K0I) taken with the 0.28m
telescope. For clarity the LHIRES2 is shifted by +0.2 along the intensities
axis.
Le figure suivante montre un
spectre d'étoile K0I réalisé avec UVES et le spectre de l'étoile Alpha UMa (type
K0I) réalisé avec LHIRES2 sur le télescope de 0,28 mètre: Pour des raisons de
clarté le spectre LHIRES2 est décalé de +0.2 suivant l'axe des intensités.
3. Some scientific programs for LHIRES2
See
also the global ARAS scientific program list
Voir
aussi la liste générale des programmes scientifiques ARAS
3.1
Ha
emission survey of high-luminosity supergiants
In the most luminous supergiant stars the continual or sporadic ejection of matter is a common phenomenon. Numerous stars of this type are accessible to the LHIRES2 spectrograph and a moderate aperture telescope (8-inch typically). The variability of the H alpha profile is highly variable and spectacular on different time scales reaching from days to months. The purpose of this survey is alert concerning exceptional events, the measure of velocity fields in the outer atmospheric region of this stars, search of pulsation or rotational modulation (tomography - dynamic spectra) and hydrodynamic studies.
The figure below concern the star Rigel (Beta Ori) and show an evidence of the variation of Ha profile if we compare a UVES spectrum and a recent LHIRES spectrum. Note that the spectral resolution of LHIRES (and LHIRES2 of course) is sufficient to resolve the lines of this area of the spectrum. Telluric lines are visible (water vapour) and have been marked ("A" letter). The wavelengths are reported to the heliocentric system. The LHIRES observation is made in Toulouse (France) with a 5-inch refractor and the cumulative exposure time is of 650 seconds.
Three days evolution of Rigel Ha profile (between February 9, 2004 and February 12, 2004) :
Another familiar star with spectrographic interest, the active supergiant Deneb (Alpha Cyg):
For
a catalog and observations of supergiants click here
3.2 Observation of
hot and massive stars
Look for example short term (5 days interval!) spectacular evolution a massive bright star, Zeta Ori (the "familiar" star near the famous Horse Nebula), observed with the LHIRES spectrograph and a 5-inch refractor:
For
a catalog and observations of massive stars click here
3.3 Survey of Be stars
The Be stars are defined to be rapidly rotating O, B, A-type stars of luminosity classes III-V which Balmer emission lines. Many B stars show these characteristics, but the Be stars correspond only to the class of non-supergiants (classes III to V). Approximately 10% of the non-supergiant B-type stars present the characteristics of the Be stars.
A characteristic of the Be stars comes from the variability of aspect of the hydrogen lines (and sometimes, helium and iron). Stars can on a cycle of a few years show lines in strong emission, usually completely absent (confused with the continuum) or in absorption as in a normal star. The frequency of the variations of the profile lines covers a very broad range since some Be stars can show certain line-profile changes in a few hours or minutes whereas others can remain stable during years. Sometimes several cycles of variations with very different periods can be superimposed. For a complete review about Be stars, click here.
An example, the time evolution of the star Zeta Tau:
For
a catalog and observations of Be stars click here
3.4 RS CVn stars
RS CVn are class of detached binary typically composed of a chromospherically active G or K stars. The system generally rotate fast with typical orbital period from a few days to 20 days. Tidal forces between the close components have locked their rotational periods to the orbital period. The RS CVn binaries display a high level of activity with strong chromospheric line emissions. One of the striking aspects of these systems is their propensity to flare. These stars shows rotational modulation of photospheric spots.and are also magnetically active (Doppler Imaging and Zeeman Doppler Imaging are classical technique used for map stellar surfaces of the RS CVn components).
Here the two days evolution of the RS CVn star UX Aries:
For
a catalog and observations of RS CVn stars click here
3.5 Spectroscopic double starsSurvey of Be stars
For pedagogical purpose (fine demonstration of Doppler effect and celestial mechanic) and because these objects are spectacular, the spectroscopic binary. Example, the fast swing of the component of 12 Boo:
For
observations of spectroscopic double stars click here
3. Design
Conception
André
Rondi et Christian Buil
Technical
documentation, click here
Documentation
technique, cliquer ici
Mise
à jour : décembre 2004 - Updated: December, 2004